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o Optimized Wave-Absorbing Control:
Analytical and Experimental Results

Khoichi Matsuda and Hironori Fujii
Tokyo Metropolitan Institute of Technology, Hino, Tokyo 191, Japan

The wave-absorbing control is a control concept to absorb waves traveling in a flexible structure at actuator
positions. This paper presents an approach to design a broadband compensator by applying the //«, control
theory to the wave-absorbing control method. This approach aims to minimize effects of the incoming waves on
the outgoing waves at the actuator positions in the sense that the //«, norm of the closed-loop scattering matrix
is minimum. Vibration suppression control for a flexible beam is studied analytically and demonstrated exper-
imentally to exemplify the controller design approach. Compensators are designed for a collocated torque
actuator and angle sensor and also for a noncollocated torque actuator and bending moment sensor. Perfor-
mance of the compensators is analyzed in the frequency domain, and measured open- and closed-loop transfer
functions are obtained from random excitation tests. The designed compensators are shown to attain good
broadband damping, and results of the experiments are shown to agree well for the range of frequency below
50 Hz with those of the numerical simulations.

I. Introduction

A CTIVE control of vibrations in large flexible structures
has received considerable attention in recent years. The

modal model is a powerful technique both for the dynamic
analysis and for the control design. However, limitations on
the applicability of the structural modal analysis exist1 when
the requirements for vibration suppression and pointing accu-
racy for flexible structures become stringent. The flexible
mode frequencies and shapes are extremely sensitive to in-
evitable modeling errors, and modal analysis cannot provide a
sufficiently accurate design model over a modally rich fre-
quency range.

One alternative is the traveling wave approach. This ap-
proach is based on the property that the response of a flexible
structure to a typical locally applied force can be viewed in
terms of traveling elastic disturbances. Mathematically, travel-
ing waves belong to homogeneous solutions of partial differ-
ential equations describing the vibration of continua. At con-
troller positions, relations between incoming and outgoing
wave vectors and control inputs are derived in a matrix form

by representing boundary conditions in terms of the traveling
wave vectors. Outgoing waves are produced by the reflection
of the incoming waves and are generated by control inputs.
Transfer functions from the incoming wave and control input
vectors to the outgoing wave vector are called scattering and
generating matrices, respectively. Control inputs are set to be
in the output-feedback form. This leads to the closed-loop
relations between outgoing and incoming waves. Compensa-
tors are selected so that the effects of the incoming waves on
the outgoing waves are reduced in some sense by adequately
selecting elements of the closed-loop scattering matrix. Char-
acteristic elements of the wave-propagation model, such as a
scattering matrix, are smooth functions with respect to fre-
quency and are more insensitive to model uncertainties than
mode frequencies and shapes. The approach can provide a
sufficiently accurate model for a controller design over a
modally dense frequency region, and considerable research has
been done on the wave control methods.1"8 However these
methods also have drawbacks, such as 1) the designed compen-
sator is not guaranteed to be a causal and real function with
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respect to the Laplace variable, 2) the closed-loop system is not
guaranteed to be stable, and 3) these methods are only applica-
ble to such a simple structure as networks of waveguides. From
a similar viewpoint, MacMartin and Hall9'10 have recently
shown a more general technique using the dereverberated driv-
ing point mobility of structure. This control law minimizes the
maximum value of the power flow entering the structure, re-
sulting in power dissipation over all frequency ranges. This
technique does not have all of the drawbacks stated earlier,
although a single-input/single-output system with a collocated
rate sensor must be assumed.

This paper presents an approach for designing a broadband
compensator by applying the H& control theory to the wave-
absorbing control method. This approach aims to minimize
effects of the incoming waves on the outgoing waves at the
actuator positions in the sense that the H^ norm of the closed-
loop scattering matrix is minimum. This can be interpreted as
minimizing the worst case H2 norm of the reflection waves,
and the designed compensator is guaranteed to be a real and
causal function. The limitations are that the closed-loop sys-
tem is not proved to be stable and that the method is not
applicable to general structures that cannot be described by
partial differential equations. However, this approach can use
various sensors that may be noncollocated at actuators and
may be applied to a multi-input/multi-output system. This is
a favorable feature for implementing the controllers from a
practical point of view. Damping performance of a closed-
loop system is improved by employing noncollocated sensors
and actuators at the sacrifice of the stability margin in many
cases. The goal is to construct a reliable control technique for
a multi-input/multi-output system with noncollocated sensor/
actuator pairs. Large space structures currently suggested have
such rather simple shapes as whole behaviors are well de-
scribed by partial differential equations. The present approach
is applied for an example to designing compensators for vibra-
tion suppression of a hanging pinned-free beam. Compensa-
tors are designed for a collocated torque actuator and angle
sensor and also for a noncollocated torque actuator and bend-
ing moment sensor. The performance of the compensators is
analyzed in the frequency domain. Results of the hardware
experiments are also reported for verifying validity of the pre-
sented technique. Measured open- and closed-loop transfer
functions are obtained through random excitation tests. The
designed compensators attain broadband damping, and good
agreement is shown between the measured and calculated
closed-loop transfer functions for the frequency range below
50 Hz.

II. Controller Design
Various disturbance waves are generated at certain points in

a large flexible structure and propagate through the structure.
The disturbance waves will be scattered at actuators, which are
located at junctions or discontinuities. The technique pre-
sented here aims to minimize effects of the incoming waves on
the outgoing waves at actuator positions in an H^ sense. Spe-
cifically, the technique minimizes the H^ norm of the closed-
loop transfer function from the incoming waves to the outgo-
ing waves, i.e., the scattering matrix. From the definition of
the //oo norm, it can be interpreted as a technique that mini-
mizes the worst-case amplitudes of the outgoing disturbances.
The problem is formulated as a four-block problem that af-
fords a systematic technique to obtain the solutions in the //«,
control theory.

Suppose a flexible structure consists of several slender struc-
tural members that are well described by partial differential
equations. Applying Laplace transformation to these equa-
tions and boundary conditions at controller positions, one can
derive causal relations between incoming and outgoing waves,
sensor outputs y, and controller inputs u as follows:

b = Sa + Bu

y = Ta + Gu
(1)

(2)

where a is the incoming waves into the sensor positions, b the
outgoing waves from the actuator positions, S the scattering
matrix whose entries are reflection coefficients, and G the
transfer function of the "infinitely extended" system such as
a semi-infinite beam.9'10 Equations (1) and (2) can be written in
the following form:

(3)

In the present analysis the controller inputs are limited to the
form

u =Ky (4)

where /if is a compensator. Equations (2) and (4) give the
control in terms of the incoming waves as follows:

u = K(I-GK)-lTa

= HTa

(5)

(6)

where 7 is an identity matrix. From Eqs. (5) and (6), K is
related to H via

(7)

Substituting Eq. (6) into Eq. (1) gives the following closed-
loop relation between a and b:

= (S+BHT)a

= Scla

(8)

(9)

where Sc\ is the closed-loop scattering matrix. Then the prob-
lem is to find a causal compensator K that minimizes the
worst-case amplitudes of the outgoing waves. On making use
of the relation between the H^ norm and the H2 norm,11 we
obtain

(10)

where a is assumed to be in H2. A compensator K that mini-
mizes 11S^ilIoo is then selected to our end.

This problem can be regarded as a four-block problem in the
//oo control theory11'13 if the controlled output vector is chosen
to be an outgoing wave vector b. If control cost is added to the
controlled output vector z, Eq. (3) is modified as

W2 (11)

where W\ and W2 are frequency-weighting functions,
||z||2 = ̂ (W\b2Y + (\\W2u2\\)2, and 0 is a null matrix. Usually,
model uncertainties become larger for a higher frequency re-
gion, and compensators must roll off at a high frequency.
Disturbance waves probably occur at a low frequency in flex-
ible structures. Hence W\ and W2 can be chosen to be low-pass
and high-pass filters, respectively. This is one of the mixed-
sensitivity optimization problems well known in the H^ con-
trol theory.

Four-block problems, as shown in Eqs. (3) and (11), can be
solved numerically in state-space form when it is difficult to
find an analytic solution. It should be noted that to apply the
state-space formula irrational functions must be suitably ap-
proximated over the frequency range of interest; for example,
by continued-fraction expansion, Fade approximation, and so
on. It is also noted that stability is not yet proved in general for
the closed-loop systems with compensators designed by this
technique.
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III. Flexible Beam Examples
A vibration suppression for a flexible beam is studied ana-

lytically and demonstrated experimentally to exemplify the
foregoing controller design approach.

Experimental Setup
A pinned-free homogeneous flexible beam is chosen as a test

structure. The beam (Fig. 1) consists of a stainless sheet of
thickness 1.0 mm, width 3.0 cm, and length 2.0 m. The bend-
ing rigidity and mass per unit length are 0.52N-m2 and
0.24 kg/m, respectively. The beam is connected to the shaft of
a dc torque motor used as an actuator and supported by a
structure fixed to the wall. The sensors consist of strain gauges
to measure the bending moment and an angular potentiometer
to measure the angle of horizontal deflection at the upper end
of the beam. The strain gauges are located at the root of the
beam, at 1.5% of the beam length. Nonminimum phase zeros
are one of the important characteristics in the noncollocated
sensor and actuator system. The location of the strain gauges
is a node of the vibration mode at about 100 Hz. These sensor
signals are amplified and put into a digital computer (with a
32-bit CPU) through an analog-to-digital converter. The com-
puter outputs a control signal to drive two dc torque motors
through a digital-to-analog converter: one is an actuator to
suppress the vibration of the beam, and the other is a shaker
to provide a disturbance force at the lower end of the beam.
The shaker is attached to the beam through a stick with a
pinned connection as shown in the Fig. 1. This test structure is
modeled mathematically as a pinned-free beam.

Dynamic Model and Controller Design
A dynamic model of the flexible beam is based on the Euler-

Bernoulli theory. The partial differential equation governing
the dynamics of the beam with the gravitational force
S(x) = pAg(L -x) is written in the form:

a4v a
^~ dx

Torque
Motor

dv
—
ot

83v a2v

-*-v

Flexible
Beam

_Angular
Potentiometer

(—*• Angular Deflection; 0 Q

•*—Strain Gages
(—*• Bending Moment ; Ms)

Shaker
Disturbance Force; F )

•Pinned Joint

together with the boundary conditions

a2v
v(0, 0 = 0, El—-r(L,iv > dx2

^ ^v
a*2 ' C) a^3

(13)

where v(x, t) is the lateral displacement, £7 the bending rigid-
ity, pA the mass per unit length, L the beam length, and Mc the
applied control torque. Damping effects are included as shown
in Eq. (12). The third and fourth terms on the left-hand side of
Eq. (12) are viscous and Chen-Russel damping, respectively.14

Equations (12) and (13) are employed in system parameter
identifications and numerical simulations of the open- and
closed-loop performance. The damping and gravitational
force terms are ignored in the following controller design for
the sake of brevity, and Eq. (12) leads to

a;2 (14)

The application of the Laplace transformation, with s as the
time transform variable, to Eq. (14) provides the ordinary dif-
ferential equation (to avoid new symbols, the transformed
variables hereafter have the same notation as their time-depen-
dent equivalents)

dx4 + s2v = 0 (15)

where a2 = EI/pA. The analysis proceeds with the introduc-
tion of the cross-sectional state vector Y = (vOmq)T, where
v = 5v is the lateral velocity, 6 = s(dv/dx) is the angular veloc-
ity, m = (a/EI)M with M = EI(d2v/dx2) the internal bending
moment, and q = (a/EI)Q with Q = EI(d3v/dx3) the internal
shear force. In terms of the state vector, the transformed Eu-
ler-Bernoulli equation can be written in the form

(16)

where/? =s/a. Since imaginary variables do not appear explic-
itly, Eq. (16) can be block diagonalized in a real Jordan canon-
ical form by the transformation as follows:

dY
dx =

0
0
0

-P

1
0
0
0

0

P
0
0

0
0
1
0

1
2

V2p 0
p3/2 p3/2

0 V2p
_/?3/2 p3/2

V2^

-/?3/2

0
^3/2

0
3/2

W = UW (17)

This transformation may be interrupted as the presentation of
the state vector in terms of traveling waves. Each entry of the
new cross-sectional state vector Jfis the amplitude of a travel-
ing wave mode, and the amplitudes of these wave modes vary
according to

dx

1 1 0
-1 1 0

0 0 - 1
0 0 - 1

0
0
1

-1

W (18)

Fig. 1 Flexible beam test setup.
The cross-sectional state vector W has been ordered as
W = (a\a2bi b2)T, where b\ and b2 are the amplitudes of wave
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modes outgoing from the pinned end of the beam, and a\ and
a2 are the amplitudes of wave modes incoming into the pinned
end of the beam. These propagation directions are related to
the wave modes at x = 0 and L by

a2f

b22f

C(Tp)
S(Tp)

0
0

-S(Tp)
C(Tp)

0
0

0
0

C(Tp)
-S(Tp)

0
0

S(Tp)
C(Tp) 2p

(19)

where C(Tp) = exp(-V7>)cos(V7>), S(Tp) = exp(-
x sin(VT^), T = L2/2, and the subscripts p and/denote the
pinned and free end of the beam, respectively. The elements of
the matrix in Eq. (19) are analytic on the right half of the
complex Laplace plane and thus are causal.

Compensators are designed for a collocated torque actuator
and angle sensor and also for a noncollocated torque actuator
and bending moment sensor in the following sections.

Collocated Torque Actuator and Angle Sensor
In this case the causal relations are derived between incom-

ing and outgoing waves, a sensor output, and a controller in-
put in the matrix form:

Equations (8) and (22) give the closed-loop relation between b2
and a:

b2=[-X \-X]a (23)

where X = \l2HpVl. Analytically, as in Ref. 9, the squared
largest singular value a2 of [—X 1 —X] is

a2 = 2[X(ja) - V2\ [X( -jco) - Y2] + Vi (24)

on the imaginary axis in the complex Laplace plane. Clearly
there cannot exist X(s) for which \\[-X l-A r]| |00<l/V2.
Since the solution X(s)=lA results in \\[-X \-X\\\*
= 1/V2, this should be an optimal solution. Therefore, the
compensator C\(s) from 6 to Mc is given by

(25)

This compensator is positive real and causal, and the closed-
loop system is guaranteed to be stable. The gain of the com-
pensator so derived is proportional to that of a compensator
designed by minimizing the H^ norm of the power flow into
the structure.9

Noncollocated Torque Actuator and Bending Moment Sensor
As in the case of the collocated sensor and actuator, relation

is derived between incoming and outgoing waves, a sensor out-
put, and a controller input in the matrix form:

C(tp)
S(tp)

-S(tp)
C(tp)

p(l-

0

C(tp)
(26)

where t=L]/2, Ls is a sensor position, and the subscripts s and c denote sensor and controller positions, respectively. This
four-block problem can be solved numerically. The designed compensator, however, does not roll off, and instability is caused for
a high-frequency region in the experiment. Frequency-weighting functions are thus added to the performance index for the
compensator to roll off, and Eq. (26) is modified as follows:

-W,C(tp)
- W,S(tp)

0

-WtS(tp)
WtC(tp)

0
Tl2pC(tp)S(tp) P(l-C(tp)2

 + S(tp)2]/^

0
-^WlP~l

W2

C(tp)

(27)

M-/) 1I_0J

-1 0
0 1

p3/2 p3/2

0 "1
-V2/7-1

-G>/2)*_
f-1\_mc\

(20)

where mc = (a/EI)Mc. Note that the sensor output is set tem-
porally to be an angular velocity here for the sake of taking the
same notations as those of Ref. 2. Modification would be nec-
essary for this case since the sensor output is actually the angle
at the pinned end and the controller input is the form

mc = (21)

The scattering matrix S is diagonal, the matrix B has a null
element in this case, and ||5ci||« is not adequate to the present
case as the performance index since it is more than HS^a, = 1 for
any controller input. Physically, the reflection waves bi cannot
be modified by the input u. Thus the reflection waves b2 are
only taken into account, and Eq. (20) is reduced as follows:

1 -V2/?- :

(22)

where W\ and W2 are frequency-weighting functions. The
weighting function W\ consists of two parts, i.e., W\
= WiaWib9 where W\a and W\b are chosen to be a high-pass
filter to eliminate the rigid-body mode and a low-pass filter to
emphasize vibration energy at a low frequency less than
100 Hz, respectively. This is because we aim to achieve a
broadband damping rather than a narrow one. The weighting
Wi is selected to be a strictly proper second-order filter, and
W2 is chosen to be a high-pass filter to emphasize the cost of
the control input at high frequency.

The matrix in Eq. (27) has elements of an irrational func-
tion. To apply the state-space formula to the four-block prob-
lem, these irrational functions are approximated to be a ratio-
nal polynomial based on the continued-fraction expansion
over the frequency range from 0.1 to 100 Hz. (For details see
the Appendix.) The approximation of the irrational function
C(tp) has a nonminimum phase zero, which is a characteristic
of a noncollocated sensor and actuator system. Tuning three
parameters of the weighting function and observing a sigma
plot of the closed-loop scattering matrix, the second compen-
sator C2(s) has been designed to be a fifth-order rational poly-
nomial.
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For comparison of the damping performance with the de-
signed compensator, the third compensator from ms to mc is
selected as follows:

C3(s) =
cos(Ws)

cosh
(28)

where a. = (pA /£7)°-25L5/V2. By setting a dominant element of
the closed-loop scattering matrix in Ref. 8 to be zero, a com-
pensator is derived as

C(s) =
cos (cuVs) —j sin(<Ws)

cosh
(29)

where j = V - 1 and a real part of C(s) is the compensator
C3(s). The design of the compensator of Eq. (29) is based on
the property that the evanescent wave modes are negligible at
high frequency. Since the compensator C(s) is a complex vari-
able with respect to 5 and only the real part is realizable, the
third compensator C3(s) is selected as Eq. (28).

Structural Response Simulation
A modal model is employed to numerically simulate the

open- and closed-loop structural responses. The eigenfunc-
tions and eigenvalues are calculated by applying Galerkin's
method to the partial differential equation, Eq. (12), employ-
ing gravity-free pinned-free beam eigenfunctions as trial func-

101

Frequency [Hz]

Fig. 2 Simulated open- (broken) and closed-loop (solid) transfer
functions (BQ/F) using the compensator OL(S).

tions. The eigenfunctions and eigenvalues are calculated in this
manner through the use of 20 trial functions, and the first 20
structural modes are employed in the structural response simu-
lation. The modal damping without control is estimated in a
semiquantitative fashion: viscous damping factor a and Chen-
Russel damping factor /3 are adjusted iteratively until reason-
able agreement in resonance peak magnitudes is achieved be-
tween measurements and calculations. The damping factors o:
and /3 are selected to be 0.3 and 0.01, respectively.

The transfer functions from the tip force to the angular
deflection at the root of the beam are obtained using the collo-
cated Hx compensator Ci(s). Figure 2 compares the open- and
closed-loop transfer functions. This compensator causes the
damping to be independent of frequency and broadband. This
feature is seen to be same as the unweighted H^ compensator
in Ref. 9.

Figure 3 compares the open- and closed-loop transfer func-
tions using the compensator C2(s) from the tip force to the
bending moment at the root of the beam, at 7.5% of the beam
length. Broadband damping is achieved, although the damping
magnitude is small due to gravity at the low-frequency region.

Figure 4 compares the same transfer functions as in Fig. 3 in
the open- and closed-loop cases using C3(s). This compensator
results in good damping at high frequencies. However, it ex-
cites larger deflection than the open-loop case at low frequen-
cies. This effect happens because the evanescent wave modes
are not negligible at the low-frequency region.

Experimental Results
The open- and closed-loop transfer functions are employed

to verify the performance of the designed compensators. The
transfer functions are measured for a frequency range of
1-100 Hz. The M-sequence signal (maximum length null se-
quence) known as a pseudorandom signal is used to excite
the system. The M-sequence signal employed in this expe-
riment keeps its power spectral density constant up to 100 Hz.
The measured transfer functions are calculated from the
autoregressive model based on the data of the random excita-
tion tests.

The compensators Ci(s) and C3(s) are irrational functions
and must be approximated to be a rational polynomial. An
approximation method is selected to retain only the first sev-
eral terms in the continued-fraction expansions of the irra-
tional functions. In the case of the compensator Ci(s) the
squared magnitudes are approximated on theyoj axis, which is
important for the control system design. At the approximation
of the compensator C3(s), however, the magnitude is constant
on the imaginary axis. The singularity is encountered at the
continued-fraction expansion in the same manner as the com-
pensator Ci(s). The compensator is thus approximated in this

Fig. 3 Simulated open- (broken) and closed-loop (solid) transfer
functions (MS/F) using the compensator €2(3).

10° 101

Frequency [Hz]

Fig. 4 Simulated open- (broken) and closed-loop (solid) transfer
functions (MS/F) using the compensator
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10-1

50

I 4°
S 30

£ 20

10
10-1 10° 101

Frequency[Hz]
103

Fig. 5 Approximated (broken) and desired (solid) transfer functions
of the compensator Ci(s).

case through the use of values on the real axis. The compensa-
tors Ci(s) and C3(s) are approximated to be a fourth- and
second-order proper rational polynomial, respectively. The
transfer function of the approximated compensator is com-
pared with the ideal Q (s) in Fig. 5. The magnitude of the ideal
compensator is well approximated. The phase deviates by as
much as 3 deg from the ideal value in the range from 0.1 to
100 Hz. Figure 6 compares the transfer functions of the de-
sired compensator C3(s) and the approximation. The transfer
function of the desired compensator is successfully approxi-
mated, within 0.2 deg of phase, up to a frequency of 100 Hz.
In addition to these approximations, all of the compensators
are discretized using a Tustin transformation with a sample
rate of 1 kHz. The digital filter is implemented by a cascade
form in the experiments. Double-precision operations are used
to prevent roundoff errors in the control algorithm.

Figure 7 compares the measured transfer functions in the
open loop and closed loop using the collocated H^ compensa-
tor Ci(s). In comparison with the results of Fig. 2, this result
shows good agreement between the calculated and measured
transfer functions except at the frequency range higher than 50

1U'

10-1
10

:::::::::::j:::::::!::::j:::j::j:j:j::!::::::::̂

:::::::::::|:::::::j::::l:::0

-i 10° 101 102 10
Frequency[Hz]

Fig. 6 Approximated (broken) and desired (solid) transfer functions
of the compensator €3(5).

10°

lo-1
10° 101

Frequency [Hz]

Fig. 8 Desired (broken) and measured (solid) magnitudes of the com-
pensator Ci(s).

101

10°

10-1

10-2

10-3
10° 102

Frequency [Hz]

Fig. 7 Measured open- (broken) and closed-loop (solid) transfer
functions (Ou/F) using the compensator C\(s).

Fig. 9 Measured open- (broken) and closed-loop (solid) transfer
functions (MS/F) using the compensator €2(5).
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Hz. At the high-frequency range the vibration modes are not
well excited due to the unmodeled shaker's dynamics, and the
signal-to-noise ratio is seen to be poor. Figure 8 shows the
comparison between the magnitudes of the measured and de-
signed compensators. As shown in Fig. 8 the compensator is
not well implemented in the high-frequency range.

In the following experiments using the noncollocated sensor
and actuator, the second-order low-pass filter is added, with
poles at 300 Hz. A significant vibration peak, not instability,
is notable at the high-frequency region without the low-pass
filter since the position of the present sensor is at the node of
the vibration mode of about 100 Hz. The vibration peak does
not appear in the numerical simulation as shown in Figs. 3
and 4 because the sensor position is modeled as a discrete
point, which has an infinitely small width in the numerical
simulations, whereas that of the experiments has a finite
width.

Figure 9 is shown to compare the measured transfer func-
tions in the open loop and in the closed loop using the noncol-
located //oo compensator C2(s). Reasonable agreement is ob-
tained between those results in Figs. 9 and 3. Some
discrepancies are seen in the high-frequency region since the
phase lag, about 30 deg at 100 Hz, is induced by the low-pass
filter and the modeling error is dominated in the high-fre-
quency range. Figure 10 shows that good agreement is ob-

101

101

10°

10-
10° IO1

Frequency [Hz]

102

Fig. 10 Desired (broken) and measured (solid) magnitudes of the
compensator €2(5}.

10°

io-2
10° IO2

Frequency [Hz]

Fig. 11 Measured open- (broken) and closed-loop (solid) transfer
functions (MS/F) using the compensator €3(5).

10°

10-
10° IO1

Frequency [Hz]

Fig. 12 Desired (broken) and measured (solid) magnitudes of the
compensator

tained between the magnitudes of the measured and designed
compensators.

Figure 11 compares the measured transfer functions in the
open- and closed-loop cases using the compensator C3(5). Rea-
sonable agreement is obtained between Figs. 11 and 4. Some
discrepancies are seen due to the same reason as in the case of
the compensator C2(s) in the high-frequency region. The mea-
sured damping amount is better than that calculated in the
low-frequency region. This is because the response is con-
strained by the shaker so that it does not grow into large
amplitude. Figure 12 shows that of the measured and desired
compensators.

IV. Conclusions
An approach for designing a broadband compensator is

presented. This approach applies the //<* control theory to the
wave-absorbing control method and aims to minimize effects
of the incoming waves on the outgoing waves at actuator posi-
tions in the sense that the H<* norm of the closed-loop scatter-
ing matrix is minimum. The present approach for design guar-
antees a compensator to be a real causal function that can be
rolled off in the high-frequency range if necessary. This ap-
proach can use various sensors that may be noncollocated at
actuators and may be applied to a multi-input/multi-output
system. The limitations are that the closed-loop system is not
proved to be stable and that the method is not applicable to
general structures that cannot be described by partial differen-
tial equations.

A vibration suppression control for a flexible beam is stud-
ied analytically and demonstrated experimentally as an appli-
cation of the present approach. Compensators are designed
for a collocated torque actuator and angle sensor and also for
a noncollocated torque actuator and bending moment sensor.
Performance of the compensator is analyzed in the frequency
domain, and the broadband damping is achieved in both of
these two cases. The measured open- and closed-loop transfer
functions are obtained by using time histories of responses in
random excitation tests. Good agreements are shown between
the measured and calculated closed-loop transfer functions.
Some discrepancies are seen due to the poor signal-to-noise
ratio, the modeling error, and also the phase lag induced by the
added low-pass filter in the cases of employing the collocated
arid noncollocated sensors, respectively. The large vibration is
observed at about 100 Hz, at which the sensor position is the
node of the vibration mode and is reduced through use of the
low-pass filter. It is concluded that the designed compensators
are able to attain sufficient broadband damping, and good
agreement is shown between the experimental and simulated
data for the frequency below 50 Hz.
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Appendix: Continued-Fraction Expansion for
Rational Polynomial Approximation

Suppose that a set of xk, k - 0, 1, 2 , . . . , is given. A contin-
ued-fraction expansion for a function f ( x ) is

X~X0

f(x) =

X — X2
(Al)

where ak = vk(xk) and vk(x) is defined by

(£ = 0 ,1 ,2 , . . . ) (A2)
A rational approximation fn (x) to the function f ( x ) is ob-

tained by truncating the continued fraction, Eq. (Al), after
the nth term. The rational polynomial fn (x) is proper or im-
proper depending on whether n is even or odd. Note that
fn(Xk) =/(**)» & = 1, 2, ... ,/2, is always satisfied. A minimum
value XQ of the set of xk , k = 0, 1 , 2, . . . ,«, with equal logarith-
mic spacing, and a truncation number n are adequately se-
lected as fn (x) matches f ( x ) well over the frequency range of
interest in the compensator design and approximation.
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